Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trials ; 24(1): 72, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726138

RESUMO

BACKGROUND: The high incidence of intraoperative glucose dysregulations in liver transplantation (LT) is related to the lack of highly orchestrated control of intraoperative blood glucose. Glucose monitoring based on a single arterial blood gas test can only provide a simple glucose profile and is insufficient in monitoring intraoperative glycemic variability (GV), which is not conducive to controlling GV and may have a lag in the management of hyper/hypoglycemia. Continuous glucose monitor (CGM), which has been successfully applied in the management of chronic disease in diabetes, provides more detailed blood glucose records and reflect GV parameters such as coefficient of variation (CV%). However, its effectiveness and accuracy for guiding blood glucose management in major surgeries remains unclear. METHODS: This is a single-center, randomized, controlled, superiority trial. One hundred and eighty patients scheduled for orthotopic LT will be recruited and randomized into two groups. All patients are monitored for intraoperative glucose using CGM combined with arterial blood gas (ABG). In the intervention group (group CG), ABG will be performed when CGM value is < 6.1 mmol/L or > 10.0 mmol/L, or the rate of change of CGM value > 1.67 mmol/(L·min). In the control group (group G), intraoperative ABG tests will be performed every 2 h, and the frequency of ABG tests will be adjusted based on the previous arterial glucose result. Patients in both groups will have their blood glucose adjusted according to arterial glucose values and a uniform protocol. Surgical and other anesthetic management is completed according to standard LT practices. DISCUSSION: This study intends to investigate the effectiveness of CGM-based intraoperative glucose management and its impact on the prognosis of LT patients by comparing the GV, mean glucose values, and the incidence of hypo/hypoglycemic events guided by the above two glucose monitoring methods. TRIAL REGISTRATION: This study is registered at www.chictr.org.cn on January 4, 2022, under the registration number ChiCTR2200055236.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante de Fígado , Humanos , Glicemia , Automonitorização da Glicemia/métodos , Estudos Prospectivos , Transplante de Fígado/efeitos adversos , Hipoglicemiantes , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Sci Rep ; 6: 23912, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27045575

RESUMO

Sirt6 is a member of the class III histone deacetylase family which is associated with aging and longevity. Sirt6 deficient mice show an aging-like phenotype, while male transgenic mice of Sirt6 show increased longevity. Sirt6 acts as a tumor suppressor and deficiency of Sirt6 leads to cardiac hypertrophy and heart failure. Whether Sirt6 is involved in atherosclerosis development, the major cause of cardiovascular diseases, is unknown. We found that the expression of Sirt6 is lower in human atherosclerotic plaques than that in controls. When Sirt6(+/-)ApoE(-/-) and ApoE(-/-) mice are fed with high fat diet for 16 weeks, Sirt6(+/-)ApoE(-/-) mice show increased plaque fromation and exhibit feature of plaque instability. Furthermore, Sirt6 downregulation increases expression of NKG2D ligands, which leads to increased cytokine expression. Blocking NKG2D ligand almost completely blocks this effect. Mechanistically, Sirt6 binds to promoters of NKG2D ligand genes and regulates the H3K9 and H3K56 acetylation levels.


Assuntos
Apolipoproteínas E/genética , Epigênese Genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Placa Aterosclerótica/metabolismo , Sirtuínas/genética , Animais , Endarterectomia das Carótidas , Feminino , Fibroblastos/metabolismo , Heterozigoto , Humanos , Ligantes , Masculino , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Transdução de Sinais
3.
Am J Pathol ; 186(5): 1278-92, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26976243

RESUMO

The liver is an essential insulin-responsive organ that is critical for maintaining glucose homeostasis and lipid metabolism. Oncostatin M receptor ß chain (OSMRß) is implicated in adipose tissue- and immune cell-mediated metabolic regulation. However, the role of hepatocyte-derived OSMRß in metabolic disorders remains unclear. Here, we report on the central role of OSMRß in the protection against obesity and deregulation of glucose and lipids. We observed significantly varied expression levels of OSMRß in hepatic tissues in both human samples and mouse models of nonalcoholic fatty liver disease. Mice lacking either whole-body or hepatic OSMRß displayed exacerbated diet-induced insulin resistance, hepatic steatosis, and inflammation, both in diet-induced and genetically (ob/ob) obese mice. These adverse effects were markedly attenuated by hepatocyte-specific overexpression of OSMRß. Mechanistically, we showed that OSMRß phosphorylates and activates the Janus kinase 2 (JAK2)/STAT3 signaling pathway in the liver. More importantly, the liver-restricted overexpression of STAT3 rescued glucose tolerance and ameliorated hepatic steatosis and inflammation in OSMRß knockout mice, whereas OSMRß overexpression failed to protect against hepatic steatosis, insulin resistance, and hepatic inflammation in STAT3-deficient mice. Thus, activation of STAT3 is both sufficient and required to produce OSMRß-mediated beneficial effects. In conclusion, hepatic OSMRß expression alleviates obesity-induced hepatic insulin resistance and steatosis through the activation of JAK2/STAT3 signaling cascades.


Assuntos
Resistência à Insulina/fisiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Subunidade beta de Receptor de Oncostatina M/fisiologia , Animais , Glicemia/metabolismo , Células Cultivadas , Deleção de Genes , Humanos , Janus Quinase 2/antagonistas & inibidores , Fígado/fisiologia , Camundongos Mutantes , Camundongos Obesos , Camundongos Transgênicos , Subunidade beta de Receptor de Oncostatina M/deficiência , Subunidade beta de Receptor de Oncostatina M/genética , Fator de Transcrição STAT3/antagonistas & inibidores
4.
Hypertension ; 66(3): 604-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26269654

RESUMO

Neuronal death after ischemic stroke involves multiple pathophysiological events, as well as a complex molecular mechanism. Inhibiting a single therapeutic target that is involved in several ischemic signaling cascades may be a promising strategy for stroke management. Here, we report the versatile biological roles of tumor necrosis factor receptor-associated factor 3 (TRAF3) in ischemic stroke. Using several genetically manipulated mouse strains, we also demonstrated that TRAF3 inhibition can be neuroprotective. TRAF3 expression, which is robustly induced in response to ischemia/reperfusion (I/R) injury, was detected in neurons. Overexpression of TRAF3 in neurons led to aggravated neuronal loss and enlarged infarcts; these effects were reversed in TRAF3-knockout mice. Neuronal TRAF3 also contributed to c-Jun kinase-, nuclear factor κB- and Rac-1-induced neuronal death, inflammation, and oxidative stress. Mechanistically, we showed that TRAF3 interacts with transforming growth factor-ß-activated kinase 1 (TAK1) and potentiates phosphorylation and activation of TAK1. Phosphorylated TAK1 sequentially initiated activation of nuclear factor κB, Rac-1/NADPH oxidase, and c-Jun kinase/c-Jun signaling cascades. Using a combination of adenoviruses encoding dominant-negative TAK1 and the TAK1 inhibitor 5Z-7-oxozeaenol, we demonstrated that the TRAF3-mediated activation of ischemic cascades was TAK1-dependent. More importantly, the adverse phenotypes observed in TRAF3-overexpressing mice were completely reversed when the TRAF3-TAK1 interaction was prevented. Therefore, we have shown that TRAF3 is a central regulator of ischemic pathways, including nuclear factor κB, Rac-1, and c-Jun kinase signaling, via its interaction with and activation of TAK1. Furthermore, certain components of the TRAF3-TAK1 signaling pathway are potentially promising therapeutic targets in ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Morte Celular/fisiologia , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Animais , Isquemia Encefálica/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neurônios/patologia , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/patologia , Fator 3 Associado a Receptor de TNF/genética , Regulação para Cima
5.
J Neurosci ; 35(34): 12047-62, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311783

RESUMO

Cell-surface receptors provide potential targets for the translation of bench-side findings into therapeutic strategies; however, this approach for the treatment of stroke is disappointing, at least partially due to an incomplete understanding of the targeted factors. Previous studies of oncostatin M (OSM), a member of the gp130 cytokine family, have been limited, as mouse models alone may not strongly resemble the human condition enough. In addition, the precise function of OSM in the CNS remains unclear. Here, we report that human OSM is neuroprotective in vivo and in vitro by recruiting OSMRß in the setting of ischemic stroke. Using gain- and loss-of-function approaches, we demonstrated that decreased neuronal OSMRß expression results in deteriorated stroke outcomes but that OSMRß overexpression in neurons is cerebroprotective. Moreover, administering recombinant human OSM to mice before the onset of I/R showed that human OSM can be protective in rodent models of ischemic stroke. Mechanistically, OSM/OSMRß activate the JAK2/STAT3 prosurvival signaling pathway. Collectively, these data support that human OSM may represent a promising drug candidate for stroke treatment. SIGNIFICANCE STATEMENT: OSM, a member of the gp130 cytokine family, regulates neuronal function and survival. OSM engages a second receptor, either LIFRα or OSMRß, before recruiting gp130. However, it is not clear whether OSM/OSMRß signaling is involved in neuroprotection in the setting of ischemic stroke. Recent studies show that, compared with mouse disease models, the OSM receptor system in rats more closely resembles that in humans. In the present study, we use genetic manipulations of OSMRß in both mouse and rat stroke models to demonstrate that OSMRß in neurons is critical for neuronal survival during cerebral ischemic/reperfusion. Interestingly, administration of human OSM also leads to improved stroke outcomes. Therefore, OSM may represent a promising drug candidate for stroke treatment.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Subunidade beta de Receptor de Oncostatina M/biossíntese , Oncostatina M/biossíntese , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Animais , Isquemia Encefálica/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia
6.
J Neurosci ; 34(36): 11897-912, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25186738

RESUMO

The failure of past efforts to develop effective stroke treatments is at least partially because these treatments often interfered with essential physiological functions, even though they are targeted toward pathophysiological events, such as inflammation, excitotoxicity, and oxidative stress. Thus, the direct targeting of endogenous neuroprotective or destructive elements holds promise as a potential new approach to treating this devastating condition. Interferon regulatory factor 9 (IRF9), a transcription factor that regulates innate immune responses, has been implicated in neurological pathology. Here, we provide new evidence that IRF9 directly mediates neuronal death in male mice. In response to ischemia/reperfusion (I/R), IRF9 accumulated in neurons. IRF9 deficiency markedly mitigated both poststroke neuronal death and neurological deficits, whereas the neuron-specific overexpression of IRF9 sensitized neurons to death. The histone deacetylase Sirt1 was identified as a novel negative transcriptional target of IRF9 both in vivo and in vitro. IRF9 inhibits Sirt1 deacetylase activity, culminating in the acetylation and activation of p53-mediated cell death signaling. Importantly, both the genetic and pharmacological manipulation of Sirt1 effectively counteracted the pathophysiological effects of IRF9 on stroke outcome. These findings indicate that, rather than activating a delayed innate immune response, IRF9 directly activates neuronal death signaling pathways through the downregulation of Sirt1 deacetylase in response to acute I/R stress.


Assuntos
Apoptose , Infarto da Artéria Cerebral Média/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Acetilação , Animais , Células Cultivadas , Humanos , Infarto da Artéria Cerebral Média/patologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Sirtuína 1/metabolismo , Acidente Vascular Cerebral/patologia , Proteína Supressora de Tumor p53/metabolismo
7.
Cardiovasc Res ; 102(3): 469-79, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24596398

RESUMO

AIMS: Vascular smooth muscle cell (VSMC) proliferation is central to the pathophysiology of neo-intima formation. Interferon regulatory factor 3 (IRF3) inhibits the growth of cancer cells and fibroblasts. However, the role of IRF3 in vascular neo-intima formation is unknown. We evaluated the protective role of IRF3 against neo-intima formation in mice and the underlying mechanisms. METHODS AND RESULTS: IRF3 expression was down-regulated in VSMCs after carotid wire injury in vivo, and in SMCs after platelet-derived growth factor (PDGF)-BB challenge in vitro. Global knockout of IRF3 (IRF3-KO) led to accelerated neo-intima formation and proliferation of VSMCs, whereas the opposite was seen in SMC-specific IRF3 transgenic mice. Mechanistically, we identified IRF3 as a novel regulator of peroxisome proliferator-activated receptor γ (PPARγ), a negative regulator of SMC proliferation after vascular injury. Binding of IRF3 to the AB domain of PPARγ in the nucleus of SMCs facilitated PPARγ transactivation, resulting in decreased proliferation cell nuclear antigen expression and suppressed proliferation. Overexpression of wild-type, but not truncated, IRF3 with a mutated IRF association domain (IAD) retained the ability to exert anti-proliferative effect. CONCLUSIONS: IRF3 inhibits VSMC proliferation and neo-intima formation after vascular injury through PPARγ activation.


Assuntos
Fator Regulador 3 de Interferon/fisiologia , Neointima , Animais , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , PPAR gama/fisiologia
8.
Nat Commun ; 4: 2852, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24284943

RESUMO

Stroke is a leading global cause of mortality and disability. Less than 5% of patients are able to receive tissue plasminogen activator thrombolysis within the necessary timeframe. Focusing on the process of neuronal apoptosis in the penumbra, which lasts from hours to days after ischaemia, appears to be promising. Here we report that tumour necrosis factor receptor-associated factor 1 (TRAF1) expression is markedly induced in wild-type mice 6 h after stroke onset. Using genetic approaches, we demonstrate that increased neuronal TRAF1 leads to elevated neuronal death and enlarged ischaemic lesions, whereas TRAF1 deficiency is neuroprotective. In addition, TRAF1-mediated neuroapoptosis correlates with the activation of the JNK pro-death pathway and inhibition of the Akt cell survival pathway. Finally, TRAF1 is found to exert pro-apoptotic effects via direct interaction with ASK1. Thus, ASK1 positively and negatively regulates the JNK and Akt signalling pathways, respectively. Targeting the TRAF1/ASK1 pathway may provide feasible therapies for stroke long after onset.


Assuntos
Apoptose , Neurônios/citologia , Traumatismo por Reperfusão/metabolismo , Fator 1 Associado a Receptor de TNF/metabolismo , Animais , Morte Celular , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais , Fator 1 Associado a Receptor de TNF/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...